$0.5 \times 0.1 \times 0.05 \text{ mm}$

Crystal source: synthesized

Colourless

at UMIST

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = 0 \rightarrow 6$

 $k = 0 \rightarrow 18$

 $l = -12 \rightarrow 12$

3 standard reflections

reflections

monitored every 150

intensity decay: none

 $V = 888 (1) \text{ Å}^3$ Z = 2 $D_x = 1.362 \text{ Mg m}^{-3}$

Data collection CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: none 1887 measured reflections 1638 independent reflections 856 observed reflections $[F > 3\sigma(F)]$ $R_{int} = 1.36$

Refinement

$\Delta \rho_{\rm max} = 0.179 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.191 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
Zachariasen type 2
Gaussian isotropic
Extinction coefficient:
$38(1) \times 10^{-7}$
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

 $U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
01	0.719 (1)	0.6692	0.5323 (6)	0.051 (3)
N2	0.890 (2)	0.7282 (7)	0.4764 (8)	0.058 (5)
C3	1.111 (2)	0.7185 (9)	0.553 (1)	0.059 (6)
C4	1.096 (2)	0.6271 (8)	0.614 (1)	0.071 (7)
C5	0.863 (2)	0.5898 (8)	0.559(1)	0.069 (7)
C11	0.899 (2)	0.7191 (8)	0.343 (1)	0.051 (5)
C12	1.079 (2)	0.7620 (9)	0.271 (1)	0.060 (6)
C13	1.076 (2)	0.7613 (10)	0.141 (1)	0.068 (7)
C14	0.886 (3)	0.7182 (10)	0.075 (1)	0.076 (7)
C15	0.720 (2)	0.6748 (9)	0.140(1)	0.064 (6)
C16	0.721 (2)	0.6765 (9)	0.275 (1)	0.064 (6)
C21	1.143 (2)	0.7896 (8)	0.6487 (10)	0.045 (5)
C22	0.978 (2)	0.8575 (8)	0.6619 (9)	0.048 (5)
C23	1.014 (2)	0.9175 (8)	0.760 (1)	0.058 (6)
C24	1.209 (2)	0.9144 (10)	0.844 (1)	0.067 (7)
C25	1.375 (2)	0.8497 (10)	0.829 (1)	0.075 (7)
C26	1.341 (2)	0.7858 (9)	0.732 (1)	0.069 (7)
C31	0.706 (2)	0.5343 (8)	0.643 (1)	0.057 (6)
C32	0.594 (2)	0.4629 (9)	0.588 (1)	0.061 (6)
C33	0.432 (3)	0.4165 (10)	0.662 (2)	0.088 (9)
C34	0.392 (3)	0.436 (1)	0.783 (2)	0.10(1)
C35	0.510 (3)	0.504 (1)	0.839 (1)	0.089 (8)
C36	0.661 (3)	0.553 (1)	0.769 (1)	0.086 (9)
F14	0.884 (1)	0.7200 (7)	-0.0539 (7)	0.106 (5)
N23	0.841 (2)	0.9878 (8)	0.769 (1)	0.070 (6)
O23A	0.712 (2)	1.0065 (8)	0.678 (1)	0.097 (6)
O23B	0.823 (2)	1.0234 (8)	0.873 (1)	0.100 (6)

Table 2. Selected geometric parameters (Å, °)

01—N2	1.44 (1)	C3—C4	1.54 (2)
01—C5	1.49 (1)	C3—C21	1.49 (1)
N2—C3	1.47 (1)	C4—C5	1.52 (2)
N2-C11	1.40(1)	C5-C31	1.50 (2)

 \bigcirc 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

N2-01-C5	103.4 (7)	N2-C3-C4	105.6 (9)
01-N2-C3	105.7 (7)	C3C4C5	104 (1)
01-N2-C11	111.6 (8)	01—C5—C4	102.8 (8)
C3-N2-C11	119.8 (9)		

Data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1977). Cell refinement: CAD-4 Diffractometer Control Software. Data reduction: PROCESS TEXSAN (Molecular Structure Corporation, 1985). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: LS TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: FINISH TEXSAN. Literature search: CSSR (1984).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1139). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

CSSR (1984). Crystal Structure Search and Retrieval Instruction Manual. SERC Daresbury Laboratory, Warrington, England.

- DuBoisson, R. A. (1986). PhD thesis, Univ. of Manchester, England. Enraf-Nonius (1977). CAD-4 Manual. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175– 189. Oxford Univ. Press.

Acta Cryst. (1995). C51, 1435-1438

4-(9,10-Dihydro-4*H*-benzo[4,5]cyclohepta[1,2-*b*]thien-4-ylidene)-1-methylpiperidinium Hydrogen Malate[†]

OSWALD M. PEETERS, NORBERT M. BLATON AND CAMIEL J. DE RANTER

Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium

(Received 21 November 1994; accepted 23 December 1994)

Abstract

The title compound, $C_{19}H_{22}NS^+$. $C_4H_5O_5^-$, is a drug used in the treatment of migraine. The tricyclic moiety is asymmetrically folded with a dihedral angle of

[†] Internal code of the Janssen Research Foundation: R21448.

 $121.5(1)^{\circ}$ between the aromatic planes. The piperidylidene ring adopts a flattened chair conformation. Hydrogen bonds between symmetry-related malate anions form endless chains in the *a* direction.

Comment

The structure of the title compound (I) has been determined as part of our studies on serotonin antagonists (Blaton, Peeters & De Ranter, 1995, and references therein). Pizotifen (sandomigran, mosegor) is a drug used in the treatment of migraine. Fig. 1 shows a view of the molecule with the hydrogen malate in the S configuration. The tricyclic moiety has the common characteristics of dihydrodibenzo[b, f]heteropins (Blaton, Peeters & De Ranter, 1995). It folds asymmetrically

about a line through C4 and C9, the endocyclic angles of the seven-membered ring facing the thiophene ring are markedly enlarged, and the conformation of the central ring is a distorted boat-sofa with a local mirror plane through C11 and the centre of the opposite bond [puckering parameters (Cremer & Pople, 1975) $q_2 = 0.782$ (3), $q_3 = 0.353$ (3) Å, $\varphi_2 = -147.9(2), \varphi_3 = 118.9(5)^\circ$; asymmetry parameter (Nardelli, 1983b) Δ (C11) = 0.056(1)]. The butterfly angle between the aromatic rings is $121.5(1)^{\circ}$. This angle decreases with the increasing bulkiness of the double-bonded substituent as can be deduced from the values 145.2 (2)° in DDCHO (Reboul et al., 1983), 131.9 (4)° in IB503 (Bastian & Weber, 1971), 129.3° in noxiptyline (Bandoli & Nicolini, 1983), 114 (3) and 117 (3)° in piroheptine (Tokuma, Nojima & Morimoto, 1968) and 104° in 5-(bromomethylene)-10,11-dihydro-5H-dibenzo[a,d]cycloheptene (Larsson, 1970). The significant difference between the S-C bond distances [1.684(3) and 1.725(4) Å] was also found in the IB503 structure. The length of the C4—C15 bond [1.349 (4) Å] indicates an isolated double bond without conjugation with the aromatic rings. The piperidylidene ring has a slightly distorted chair conformation flattened at the C15 apex. The hydrogen malate anion is statistically disordered. Both enantiomers are present at the same position of the unit cell. The conformation of both configurations belongs to type I (van der Sluis & Kroon, 1985). The

conformation of the carbon skeleton is antiperiplanar $[176.5(4), -164.6(8)^{\circ}]$ with the carbonyl group of the glycolic acid moiety roughly planar with the hydroxyl O atom $[-8.7(7), -168(1)^{\circ}]$. O—H···O hydrogen bonds between a-glide equivalent malate anions form endless chains in the *a* direction $[O29A \cdots O26A^{i} 2.595 (6);$ $O29B \cdots O26B^{i}$ 2.49 (1) Å; symmetry code: (i) $\frac{1}{2} + x$, $-\frac{1}{2} - y$, z]. Within this bridge it is hardly possible to discriminate between the donor and acceptor atom as the electron-density maximum found in a difference Fourier synthesis is situated centrally in a symmetric O-H-O bond. N-H···O hydrogen bonds [N18-H18 0.91, H18...O28A 1.84, N18...O28A 2.729 Å, N18-H18···O28A 165°; H18···O28B 2.08, N18···O28B 2.961 Å, N18-H18···O28B 163°] connect the pizotifen cation to the malate anions.

Fig. 1. Perspective view of the title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Experimental

```
Crystal data
C<sub>19</sub>H<sub>22</sub>NS<sup>+</sup>.C<sub>4</sub>H<sub>5</sub>O<sub>5</sub><sup>-</sup>
                                           Cu K\alpha radiation
M_r = 429.52
                                           \lambda = 1.54184 Å
Orthorhombic
                                           Cell parameters from 24
Pcab
                                              reflections
a = 9.973(1) Å
                                           \theta = 20-25^{\circ}
b = 17.101(2) Å
                                           \mu = 1.610 \text{ mm}^{-1}
c = 25.496(3) Å
                                           T = 293 \text{ K}
V = 4348.4 (8) Å<sup>3</sup>
                                          Plate
Z = 8
                                          0.47 \times 0.25 \times 0.05 mm
D_{\rm x} = 1.312 {\rm Mg m^{-3}}
                                          Colourless
D_m = 1.306 \text{ Mg m}^{-3}
                                          Crystal source: Janssen
D_m measured by flotation in
                                              Research Foundation,
   n-heptane/CCL
                                              Beerse, Belgium
```

PEETERS, BLATON AND DE RANTER

Hilger & Watts four-circle diffractometer985 observed reflections $[F^2 > 3.0\sigma(F^2)]$ $O29B$ $O30B$ 0.2277 (8) 0.071 -0.0702 (5) 0.072 (6) 0.4922 (4) 0.5492 (3) 0.074 0.138 $\omega/2\theta$ scans $R_{int} = 0.0743$ $\theta_{max} = 56.99^{\circ}$ empirical, ψ scan (North, $h = 0 \rightarrow 10$ Table 2. Selected geometric parameters (Å, °) $S1-C2$ 1.684 (3) $S1-C11$ $C17-N18$ 1.725 (4) $N18-C19$ 1.475	8 (4) 8 (6) 77 (4)
diffractometer $[F^2 > 3.0\sigma(F^2)]$ $\omega/2\theta$ scans $R_{int} = 0.0743$ Absorption correction: $\theta_{max} = 56.99^{\circ}$ empirical, ψ scan (North, $h = 0 \rightarrow 10$ S1-C21.684 (3)C17-N181.477S1-C111.725 (4)N18-C191.488	7 (4)
Absorption correction: $\theta_{max} = 56.99^{\circ}$ Table 2. Selected geometric parameters (A, °)empirical, ψ scan (North, $h = 0 \rightarrow 10$ $S1-C2$ 1.684 (3) $C17-N18$ 1.47 S1-C1 1.725 (4) $N18-C19$ 1.48	77 (4)
empirical, ψ scan (North, $h = 0 \rightarrow 10$ S1-C2 S1-C1 S1-C1 S1-C2 S1-C1 S1-C2	77 (4)
S1-C11 1.725 (4) N18-C19 1.48	
Phillips & Mathews, $k = 0 \rightarrow 18$	52 (4) 30 (4)
1968) $l = -26 \rightarrow 26$ C3-C12 1.419 (5) C19-C20 1.52	25 (5)
$T_{\min} = 0.757, T_{\max} = 4$ standard reflections C4-C12 1.509 (4) C22A-C23A 1.52	25 (7)
0.968 monitored every 50 C4-C13 1.496 (4) C22A-O28A 1.22	25 (6)
5220 measured reflections reflections $C5 = C6 = 1.391(5) = C224 = C294 = 1.25$	09 (0) 05 (6)
2773 independent reflections intensity decay: $<3.0\%$ C5–C13 1.394 (4) C23A–O30A 1.35	51 (6)
C6–C7 1.376 (5) C24A–C25A 1.519	10 (7)
Refinement C7-C8 1.388 (5) C25A-O26A 1.28	30 (6) 25 (6)
Refinement on F^2 $\Delta a_{\pm} = 0.17 \text{ e} \overset{\circ}{\text{A}}^{-3}$ C9-C10 1.523 (5) C22 <i>A</i> -C27 <i>A</i> 1.10.	5 (6) (1)
$R[F^2 > 3\pi(F^2)] = 0.0561 \qquad A_{0,1} = -0.20 e^{A^{-3}} \qquad C9-C14 \qquad 1.519 (5) C22B-O28B \qquad 1.23$	3 (1)
$R(F^2) = 0.0000$ Extinction correction: C10-C11 1.473 (5) C22B-O29B 1.26	5 (1)
$M_{11} = 0.0000$ Extinction concertoin. C11–C12 1.357 (4) C23B–C24B 1.50)(1)
2773 reflections 1003) C15-C16 1513 (4) C256-C306 1.54	+ (1) 2 (1)
2775 reflections 1955) clib coefficient: C15-C20 1.499 (4) C25B-O26B 1.27	7 (1)
H-atom parameters not 0.00021 (3) C16–C17 1.510 (5) C25B–O27B 1.19) (1)
ration parameters not 0.00021 (3) rationed Atomic scattering factors C2-S1-C11 92.4 (2) C15-C16-C17 113.0	.0 (3)
$ = 1 [\sigma^2(F_c^2) + (0.044P)^2] $ from laternational Tables S1-C2-C3 111.1 (3) C16-C17-N18 111.1	.1 (3)
where $P = (P_{2}^{2} + 2F_{2}^{2})/3$ for Y ray Crystallography cut at 112 (3) C17-N18-C21 1113	.9 (3)
$(\Lambda/\sigma)_{} = 0.085$ (1074 Vol IV Tables C12-C4-C15 122.5 (3) C12-N18-C19 1111	.0 (2) 4 (2)
$(1-1)^{-1}$ $(1-$.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7 (3)
C5-C6-C7 121.4 (3) 028A-C22A-029A 123.3	.8 (5)
$\begin{bmatrix} C_{0} - C_{1} - C_{2} \\ C_{2} - C_{3} - C_{2} \\ C_{3} - C_{3} \\ C_{3} - C_$.0 (4)
Table 1. Fractional atomic coordinates and equivalent $C_{1-C_{0}-C_{14}} = 125.2(5) = C_{25n} - C_{25n} $.7 (4)
$C_{224} = C_{234} = C_{244} = C_{2$.4 (4)
$U = (1/3) \sum \sum U_{a} a^{*} a^$.9 (4)
$C_{eq} = (1, 5) \Delta_1 \Delta_2 C_3 M_1 M_2 M_1 M_2$. $C_{10} = C_{11} = C_{12} = 130.5 (3) C_{23A} = C_{23A} =$.4 (4)
x y z U_{eq} $S1-C11-C12$ $111.2 (3)$ $C24A-C25A-O27A$ $112.$.8 (5)
S1 = -0.0222(1) = 0.23145(6) = 0.17320(4) = 0.0743(4) = 0.45 = 0.1021(6) = 0	.3 (5)
$C_{3} = -0.054$ (3) 0.1532 (2) 0.254 (1) 0.054 (1) C_{3} — $C12$ — $C4$ 122.0 (3) $028B$ — $C22B$ — $029B$ 123	(1)
C4 0.1312 (3) 0.0497 (2) 0.2540 (1) 0.039 (1) C4 C13 C5 120.3 (3) C23B C22B O29B 116.	.3 (9)
C5 0.0933 (3) -0.0878 (2) 0.2233 (1) 0.056 (1) C5 C13 C14 120.2 (3) C23B C23B C23B C28B 119.3 (3) C23B C23B C28B C28B 119.3 (3) C23B C23B C28B C28B 119.3 (3) C23B C23B C28B C28B 119.3 (3) C28B C28B C28B C28B C28B C28B C28B C28B	.9 (9)
C6 = 0.1124 (3) = -0.1462 (2) = 0.1860 (1) = 0.056 (2) = C7 = -0.14 = -C13 = -119.9 (3) = C22B = -C23B = -C23B = -1119.9 (3) = C22B = -C23B	.4 (8)
C_{1}^{\prime} 0.1858 (3) -0.1329 (2) 0.1412 (1) 0.055 (1) (2) C8-C14-C13 117.9 (3) C24B-C23B-O30B 113.	.3 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2 (8)
C10 0.1913 (3) 0.1389 (2) 0.1453 (1) 0.061 (2) C4 C15 C16 123.1 (3) $C24B - C25B - 027B$ 121.	.0 (9)
C11 0.0890 (3) 0.1563 (2) 0.1853 (1) 0.049 (1) C4-C15-C20 113.0 (3) $224B-C25B-C27B$ 124	(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(-)
C14 0.2316 (3) -0.0009 (2) 0.1792 (1) 0.051 (1) $C15$ $C4$ $C12$ $C3$ -46.2 (5)	
C15 0.1649 (3) 0.0439 (2) 0.3052 (1) 0.039 (1) C12—C4—C13—C14 59.8 (4)	
C16 0.1382 (3) 0.1073 (2) 0.3452 (1) 0.049 (1) C15-C4-C13-C5 60.7 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C20 0.2249 (3) -0.0284 (2) 0.3287 (1) 0.051 (1) C15-C4-C13-C14 -123.8 (3)	
C21 0.4032 (3) 0.0593 (2) 0.4471 (1) 0.075 (2) C10-C9-C14-C8 104.9 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
O26A -0.0986 (4) -0.3276 (2) 0.4672 (2) 0.088 (2) C4-C15-C20-C19 138.9 (3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

030A

C22B

C23B

C24B

C25B

O26B

O27B

-0.1411 (3)

0.106 (1)

0.029 (1)

-0.006 (1)

-0.113(1)

-0.103(1)

-0.2041 (9)

-0.1083(2)

-0.0762 (6)

-0.1432 (5)

-0.2046 (5)

-0.2604 (6)

-0.3297 (5)

-0.2375 (5)

0.4792 (2)

0.4797 (4)

0.5045 (3)

0.4647 (4)

0.4847 (5)

0.4673 (4)

0.5106 (4)

0.078 (2) 0.061 (3)

0.051 (3)

0.078 (3)

0.068 (3)

0.086 (4)

0.130 (6)

O29A-C22A-C23A-O30A

029A-C22A-C23A-C24A

C22A—C23A—C24A—C25A

O30A—C23A—C24A—C25A C23A—C24A—C25A—O26A

C23A—C24A—C25A—O27A

O28B-C22B-C23B-O30B

166.6 (4)

-66.0 (6)

-54.5 (6)

145.1 (4)

-32.4(7)

-167 (1)

O28B-C22B-C23B-C24B	59 (1)
O29B-C22B-C23B-O30B	23 (1)
O29B—C22B—C23B—C24B	-109 (1)
C22B—C23B—C24B—C25B	-164.6 (8)
O30B-C23B-C24B-C25B	60 (1)
C23B—C24B—C25B—O26B	-148.0 (9)
C23B—C24B—C25B—O27B	39 (1)

Data were collected using a fixed scan speed of 1.2° min⁻¹ and a scan width of 1.2° . Structure solved by Patterson and direct methods for the difference structure. Refinement with full-matrix least squares on F^2 for all reflections. H atoms (except the carboxyl H atom, which was obtained from a difference Fourier synthesis) were calculated at geometrical positions and riding on their parent atom. The hydrogen malate anion was disordered. Both enantiomers are present at the same position and were refined with geometrical and similar U_{ij} restraints (SADI and SIMU in SHELXL93). The sum of the occupancy factors was constrained to 1.0. The occupancy factor for molecule A was 0.688 (2).

Data collection: Y290 (Hilger & Watts, 1969). Cell refinement: XRAY76 (Stewart et al., 1976). Data reduction: REDU4 (Stoe & Cie, 1992). Program(s) used to solve structure: DIRDIF (Beurskens et al., 1992). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEX2.1 (McArdle, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983a).

The authors thank Dr J. Tollenaere of Janssen Research Foundation (Beerse, Belgium) for providing a sample of the pizotifen malate.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1139). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bandoli, G. & Nicolini, M. (1983). J. Crystallogr. Spectrosc. Res. 13, 191-199.
- Bastian, J. M. & Weber, H. P. (1971). Helv. Chim. Acta, 54, 293-297.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51. In the press.
- Cremer, D. & Pople J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Hilger & Watts (1969). Y290 Software Package. Hilger & Watts Ltd, London, England.
- Larsson, K. (1970). Acta Chem. Scand. 24, 1503-1511.
- McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
- Nardelli, M. (1983a). Comput. Chem. 7, 95-98.
- Nardelli, M. (1983b). Acta Cryst. C39, 1141-1142.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Reboul, J. P., Soyfer, J. C., Cristau, B., Darbon, N., Oddon, Y. & Pepe, G. (1983). Acta Cryst. C39, 600-603.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Refinement. Univ. of Göttingen, Germany.
- Sluis, P. van der & Kroon, J. (1985). Acta Cryst. C41, 956-959.
- Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. & Flack, H. (1976). *The XRAY76 System*. Technical Report TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Stoe & Cie (1992). REDU4. Data Reduction Program. Version 7.03. Stoe & Cie, Darmstadt, Germany.

Tokuma, Y., Nojima, H. & Morimoto, Y. (1968). Bull. Chem. Soc. Jpn, 44, 2665-2670.

Acta Cryst. (1995). C51, 1438-1440

1,3,4,10b-Tetrahydro-4-phenylpyrido[2,1-*a*]isoindole-2,6-dione

ATHELSTAN L. J. BECKWITH, SAJAN P. JOSEPH, Roshan T. A. Mayadunne and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT, Australia 0200

(Received 18 October 1994; accepted 24 January 1995)

Abstract

The piperidone ring in the title compound, $C_{18}H_{15}NO_2$, is in a chair conformation. Coordination at the N atom is planar. The phenyl substituent and the bridgehead H atom at the ring junction are *cis* and in axial orientations with respect to the piperidone ring.

Comment

In the course of studies aimed at the diastereoselective synthesis of alkaloids containing the indolizidine nucleus, the substituted dihydropyridone (I) was treated with tributylstannane in benzene to afford (II) as the sole cyclized product (Beckwith, Joseph & Mayadunne, 1993).

The structure and stereochemistry of (II) were predicted from ¹H and ¹³C NMR spectra, and molecularmechanics calculations on the transition structure. These predictions have now been validated by the present single-crystal X-ray analysis.

Cremer & Pople (1975) puckering parameters for the piperidone ring, calculated using *RING88* (Cremer, 1988), indicate that it is in a chair conformation ($q_2 = 0.059$, $q_3 = 0.493$ Å, $\varphi_2 = 83.2^{\circ}$ and $\theta_2 = 6.8^{\circ}$). The phenyl substituent at C12 and the H atom at the ring junction (C8) are *cis* and in axial orientations with respect to the piperidone ring, while the C7—C8 bond formed during the cyclization is equatorial. The five-membered ring has a shallow twist conformation